Showing posts with label codevita 2018 solution. Show all posts
Showing posts with label codevita 2018 solution. Show all posts

Codu And Sum Love 2018

Codu And Sum Love

Problem Description

```
Scanner sc = new Scanner(System.in);
long sum = 0;
int N = sc.nextInt();
for (int i = 0; i < N; i++) {
final long x = sc.nextLong(); // read input
String str = Long.toString((long) Math.pow(1 << 1, x));
str = str.length() > 2 ? str.substring(str.length() - 2) : str;
sum += Integer.parseInt(str);
}
System.out.println(sum%100);
```
Given N number of x’'s, perform logic equivalent of the above Java code and print the output

Constraints

 1<=N<=10^7 0<=x<=10^18

Input Format

 First line contains an integer N
Second line will contain N numbers delimited by space

Output

 Number that is the output of the given code by taking inputs as specified above
 

Explanation

Example 1
 
Input
 4 8 6 7 4
 Output
 64
Example 2
Input
3
1 2 3
Output
14

Program

#include <stdio.h>
long power(long k)
{
    long i,j=1;
    for(i=1;i<=k;i++)
        j=j*2;
        return j;
}
long length(long k)
{
    long ct=0,n1;
    while(k)
    {
        ct++;
        k=k/10;
    }
    return ct;
}
long reduce(long p1,long r1)
{
    long ct=0,k,cnt,rev=0,a[1000],h=0,i,sum1=0;
    while(p1)
    {
      k=p1%10;
      a[h]=k;
      h++;
      p1=p1/10;
     }
      for(i=1;i>=0;i--)
      sum1=sum1*10+a[i];
    return sum1;
}
int main() {
 long x,n,sum=0,r[70],p,c,f=0,i;
 scanf("%ld",&n);
 for(i=0;i<n;i++)
 {
    scanf("%ld",&x);
    p=power(x);
    c=length(p);
    if(c>2)
    {
    r[f++]=reduce(p,c);
    }
    else
    r[f++]=p;
 }
 for(i=0;i<n;i++)
 
 sum=sum+r[i];
   printf("%ld",(sum%100));
 
 
 return 0;
}

Output:

4 8 6 7 4
64


You can also try running it on online IDE: https://ide.geeksforgeeks.org/G3gXokhTbW

Your doubts and feedback are welcomed! you can comment it below Cheers!

Related Link: Super Ascii

Super Market Problem | TCS Code Vita 2023 - Zone 1 | Super Market TCS Code Vita 2023 Solution | Code Vita 2023 | Code Vita 2023 season 11 solution

 Problem Description: In a Super market we will find many variations of the same product. In the same way we can find many types of rice bag...